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Discreteness effects in a a4 chain with long-range 
interactions 
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Yaounde, Cameroun 

Received 16 May 1990, in final form 14 November 1990 

Abstract. We study the influence of discreteness on kink motion in a one-dimensional 
O4 chain with long-range atomic interactions of Kac-Baker type. We use a discretized 
Hamiltonian formalism in which the kink appears as a canonical degree of freedom. It is 
shown that thekinkoscillatorymotionandlattice trappingprocesses dependsuonglvon the 
range of interaction. 

1. Introduction 

A number of computer simulations and theoretical studies have been made on the 
importance of the discreteness effects on the structural and dynamical properties of 
Sine-Gordon (Kerr eta1 1981, Peyrard and Kruskall984, Willis etall986, Standoff et 
all986, Boesch eta1 1989) and Q4 (Schmidt 1979, Combs and Yip 1983,1984, Kunzand 
Combs 1985) chains. Soliton energy loss to phonons and pinning effects were found in 
these initial studies. The Qp4 chain generalized to include non-linear nearest-neighbour 
interactions and linear second-neighbour interactions along the chain has been studied. 
The effect of energy radiation due to discreteness effects under an external field has 
been studied with and without other extrinsic dissipation mechanisms (Pnevmatikos er 
aZ1987). A model of a non-linear ID lattice with a long-range coupling of the Lennard- 
Jones type has been studied previously (Ishimori 1982). 

Another long-range potential is the Kac-Baker type; this potential has been studied 
extensively in connection with the king model (Kac and Helfand 1973, Helfand 1964, 
Baker 1961) and the Pott models (Viswanathan and Meyer 1977). It has also been used 
todiscuss, in thecontinuum limit, theeffectsofsolitonson the thermodynamicproperties 
of a chain (Sarker and Krumhansll981). The case of an anharmonic non-magnetic chain 
with long-range interactionswasstudied (Remoissenet andnytzanis 1985), and recently 
the same potential was used in an anharmonicmagnetic Heisenberg chain (Ferrer 1989). 
Also, by using the kernel operator, the influence of long-range interactions between 
particles, on the commensurate-incommensurate phase transition has been investigated 
(Pokrovsky and Virosztek 1983). 

In this paper, we apply, in the non-relativistic limit, an extension of the field theor- 
etical technique to the discrete kink problem to evaluate the weight of the force range 
interaction parameter on kink motion in a one dimensional discrete lattice. The for- 
malism has recently been exposed and used (Willis et al 1986) in the Sine-Gordon 
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lattice. The organization of the paper is as follows. In section 2 ,  we present the model 
Hamiltonian and the formalism. In section 3 we derive the equations of motion for 
soliton coordinate and dressing, and their properties are analysed in terms of the range 
of interactions, while the last section is devoted to a summary. 

2. The model Hamiltonian and formalism 

We consider an infinite one-dimensional latticeof ionslyingon the bistable @'potential. 
These ions are assumed to interact via the Kac-Baker potential. In this long-range 
interaction potential, the interactions between particles fall off exponentially as the 
distance between them increases. The Hamiltonian of such a system is: 

H = tZ(dyi/dt)' + fZV,j(y, - yj)' + f Z ( y f  - 1)' (14 

where y i  is the displacement of the ith atom from its equilibrium site xi = ib, b is the 
lattice constant which has been set equal to the unity. 

b',i = [J(1 - r)/2r]rm (1b) 

is the Kac-Baker potential (0 < r < 1); m = abs(i - j )  is the distance between atoms on 
different sites i and j .  V,j is chosen so that the total potential experienced by one atom 
due to all others is finite in the thermodynamic limit (the number of atoms is infinite); it 
isequalto theconstantl. Forr = 0, themodelreducestoanearest-neighbourinteraction 
problem. The limit r = 1 ,  which should be taken only when the number of particles is 
infinite, corresponds to the infinite range problem, also called the Van der Waals model 
since the behaviour of the system in this limit is identical to a Van der Waals model 
(Baker 1961). 

In the continuum limits, the Hamiltonian system (1) exhibits solitons or kinks 
solutions given implicitly by the equation (Sarker and Krumhansl1981): 

(x  - u1)/V'25 = -3(u/2)'h sinh-'[2u/(l + u)]'"y 

+ (1 + 3u)'/* tanh''[(l + 3u)/(l + U + 2 0 y ~ ) ] ' ! ~ y  ( 2 )  

whereE2 = [J(1 + r)  - r - o'(1 - r )*] / ( l  - r)*ando= r/(l - r)252. udefinesthevel- 
ocity at the kink's point of steepest gradient. The parameter 5 has the dimension of 
lengthandgivesameasureofthesolitonwidth. For mathematicalsimplicity, theimplicit 
solution (2 )  has been reduced to the analytic expression 

y k ( x ,  I) = tanh[K(x - or)] 

K2 = ( 1  - r)*/2[J(l + r) - r] 

(3) 

(4) 

where (4) is considered to be the pseudo-kink width. The soliton profiles given by (2) 
suffer slightly because of the approximation (3). Equation (4) shows that the physical 
applications of our model belong to the non-relativistic regime. Since K-'  should be 
greater than one lattice spacing, we require J > t. 
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Our aim is to analyse some dynamical and static properties of kink motion in our 
system. For this purpose, we consider the decomposition of the discrete displacement 
y, in the manner: 

Yi  = Y X ' W ) )  + w i  

dyi/dt = d W i / d r  + y$') dX/dt 

(54 

(5b) 

which yields 

with y;(X(t)) = tanh[K(i - X)] defining the continuum kink at the discrete lattice i; 
y$') = dyi/dX and vi is the correction or dressing on the continuum kink (3) because of 
the discreteness of the lattice. The dynamical variableX(r) is the position coordinate for 
the kink. In order to derive the equation of motion for X(t), we need to reformulate 
the Hamiltonian description. This will be achieved by introducing in (1) the above 
coordinates and their canonically conjugate momenta. We also need two constraint 
conditions on the discrete variables and a new formulation of the canonical bracket. The 
constraints are 

(6) c -E i(l) . = o  c,  = 2y$1)q; 0 2 -  Y k  pt 
where pi is the conjugate momentum of the dressing vi. These constraints have already 
been used in Q4-field theory (Tomboulis 1975, Willis et a! 1986). The first one tends to 
minimize the correction in the domain-wall region and the second means that the kinetic 
energy of the new Hamiltonian must not have cross terms between the soliton kinetic 
energy and the particles kinetic energies. The new canonical brackets are defined as 
follows (Dirac 1964, Willis elal1986): 

where 6 is the kronecker delta and M = E(Y$I) )~ .  The equation (7) is defined in the 
manner that {C,, C2} = 0, as it must he if the constraint C1 = C2 = 0 is to be satisfied. 
One must note that the conventional Poisson bracket yields {C,, C2} = M not equal to 
zero. This violates the requirement that C ,  = C2 = 0. As a consequence of the above, 
the new Hamiltonian of our system is: 

which can be rewritten as: 

M, defined previously, is the dimensionless mass of the soliton and P = M(dX/dt) is the 
conjugate momentum of the dynamical variable X. 

{ y l i , p i }  = 6, - M-IY$~)Y#~) (7) 

H = P2/2M + lE(dqi/dt)2 + EV(wi + yi(X), r)  

H = P2/2M + iX(dvi/dt)2 + U ( X ,  v i ,  r )  

V(wi + ~ i ( x ) ,  4 = +[(vi + Y;)* - 11' + z V i j [ ( ~ i  + ~ l )  - ( W j  + y f ) l z  

( 8 4  

(8b) 

(84 
(84 v i ,  r )  = X:v (wi  + yi(X), 4 

where U(X, vi, r) is the generalized potential of the Hamiltonian system. 

3. Equations of motion and inhence of the long-range parameter 

The Poisson brackets formalism, equations (7) and (8) yield these equations of motion 
for soliton coordinate X ( t )  and the dressing Wi: 

d2X/dr2 + I(dX/dt)2 d In M/dX = (-l/M) dU/dX (9) 
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dZyi/dt2 = - (vi + y;(X))) + (1 - ZJ)(y; + y&X')) + [J(1 - r)/r]Zr"(yi + qj )  

Equation ( loa)  shows that the corrections vi are coupled to the kink motion. Similar 
equations have been obtained in the sine-Gordon lattice with first-neighbour inter- 
actions (Willis et al1986). The difference between these equations and ours is that the 
generalized potential depends not only on X and vi, but also on the parameter r which 
characterized the range of interactions between particles. As we will show below, the r 
dependence hasastronginfluence on thegeneralizedpotential, thuson the kink motion. 

- y$I)  [dzX/dfz + I)(dX/dt)z d In M/dx].  (104 

If r = 0, equation (loa) is reduced to: 

d2Vi/dfz -J (V i+ i  + @;-I - 2vi) + [3(Y1)' - 1IVi 
= (J /12 ) (~$~) )  - y$') [d2X/dtZ + I(dX/df)2 d In M/dX] (106) 

in which we have neglected the derivatives of order greater than four, y p )  is the X 
derivative of y; of the nth order. The first term of the right-hand side arises from the 
kink structure and the second one from the kink acceleration. 

To evaluate the X potential derivative with a good accuracy, we need to determine 
the dynamical variable vi by equation (10). But, since the contribution of vi does not 
modify the shape of the generalized potential (Combs and Yip 1983, 1984, Willis et ai 
1986) (it modifies the size), we shall, in this paper, discuss the case where vi approaches 
zero (e.g. the continuum limit). Our restriction is somewhat justified since for all values 
of J greater than 1, the pseudo-kink width is larger than the unity: e.g. than the lattice 
spacing which has been taken equal to unity (6 = 1). In this case, theX derivative of the 
potential is: 

dU/dX = X ~ $ ' ) [ ( y i ) ~  - (1 - 2J)yJ - Li] 

L,  = [J(1 - r)/r]X(r"yi) = d2y:/dtZ - (1 - 2flyi + (yi)'. 

( r  + l/r)Lz = L;+,  + Lc-l + [J(1 - r)/r](yF' + yi-' - 2ry:) 

(114 
where the auxiUiary quantity Li (Sarker and Krumhansll981) is: 

(ilb) 

(llc) 

Following the recursive formula 

and using Taylor expansion formula in which the derivatives order greater than four are 
neglected, one obtains 

dU/dX = -[r/lZ(l - r)Z]Zy$1)[[(yi)3](4) + {[J(I + r )  - r]/r}(y;)(")l. 

dU/dX = ZE,, sin(2nnX) = E l  sin(2nX) 

E ,  = -(r/6(1 - r)')({[J(l + r) - r]/r}In + J.) 

(114 

(124 

(1B) 

( W  

This is an odd periodic function (with period 1) which is reduced to the Fourier series: 

where 

with 

I ,  = -8n2?r3KZ sinh-'(nzZ/K)[2(q + 1)/3 - 4(q + l ) (q  + 4)/15] 

J ,  = 24K4rrsinh-'(n?rz/K)[-54(q + l)(q + 4)(q + 9)(q + 16)/567 

+ 788(q + l)(q + 4)(q + 9)/315 - 142(q + l)(q + 4)/15 + 8(q + 1)/3] 
(124 
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Figure 1. The potential wall E ,  (in millions) plotted as a function of elastic coefficient I for 
the range interaction parameter r equal to 0.1 (full curve), 0.2 (broken curve), 0.3 (dotted 
curve) and0.4 (chaincurve). 

and q = (nn/K)z dU/dX can be seen as the Peierls-Nabarro force which is responsible 
for the pinning of dislocation segments in crystal materials and the quantity E ,  = 
E,/x is the Peierls-Nabarro barrier (Nabarro 1967, Willis et a1 1986, Combs and Yip 
1983). We also find that the kink dimensionless mass M has the periodic form: 

M = MO + ZM. cos(23cnX) =MO + MI cos(2xx) (134  

MO = 4K/3 M ,  = (8xZn/3)(q + 1) sinh-'(nn'/K). (13b) 

with 

The kink dimensionless mass is related to kink width: as the kink width increases 
(e.g. the range of the interaction increases), MO and M ,  tend to zero. This means the 
disappearance of the kink when the range of interaction is very large. Since the kink 
width becomes infinite for large values of interaction parameter, it corresponds to the 
case in which all the particles sit at the top of the double well (yx = 0) and have high 
energy. A situation energetically less favourable for the system to support and inap- 
propriate for long-range order at finite temperature. 

As the consequence of the periodic structure of the potential, kink can be trapped 
while propagating alongthe chain and can emit phonons while oscillating in the potential 
depth. The potential wall E, is plotted as a function of elastic coefficient J for various 
values of the range interaction parameter r (figure 1). 

From this figure we see that E, vanishes exponentially as rand J increase. It is also 
Seen that the maximum value of the potential wall decreases as the range of interaction 
increases. This means that for a large range of interaction, the pinning and the trapping 
effects are absent from the lattice. Since U cte in this limit, the discrete lattice effects 
are insignificant: the kink travels freely in the chain. 
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When r is equal to zero, E ,  is reduced to 

E ,  = b5{3 sinh[(2Jn4)1/2]}-1[2(qo + 1)/3 - 4(q0 + l)(qo + 4)/15] (14) 
where qo = Zn*J. 

The expression (14), different from the one obtained numerically by Combs and Yip 
(1983), gives the rigorous expression of the energy barrier height in the @" lattice with 
first-neighbour interactions. As r tends to one, E ,  vanishes, the width of the soliton 
becomes infinite and the discretenesseffect theory cannot be applied. Theconstant mass 
Mu decreases as r increases and the X dependence of the kink mass is unimportant since 
MI 4 MO. This leads to: 

V ( t )  = Vo - (E, /Mo) 1' sin(bX) dt 
0 

where Vo is the kink initial velocity. 

4. Summary 

We have studied the effect of long-range interactions on kink motion in a Q 4  discrete 
lattice. In the model chosen, interaction between displacement fields at different points 
falls off exponentially with separation, and the range of interaction can be varied 
continuously. 

We have discovered that the lattice generalized potential depends strongly on the 
long-rangeinteraction parameterr. As the range ofthe interactionincreases, the pinning 
effects and the trapping process are theoretically absent in the chain ( E ,  tends to zero). 
This means that, when the range of interactions is large, the discreteness effects are 
weak and the soliton velocity is constant (the soliton moves freely in the chain). This is 
in accordance with the fact that with large values of r ,  the soliton recovers many lattice 
spacings (e.g. the continuum limit). 

In a later work. we hope to use a numerical technique to analyse the influence of the 
correction vi as well as the effects of kink-phonon interactions on the equation of 
motion. Because of the mathematical complexity, the model has been limited to a 
free system, but the long-range interaction Hamiltonian system can be generalized to 
incorporateexternal field with and without timedependence. and in addition incorporate 
a Rayleigh dissipative function. This can give a theoretical explanation of damping 
processes which occur during the kink propagation. It would also be of great interest to 
look at the influence of thermal processes on energy barrier height. 
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